In Brain News, Brain Tumour Data, Research News

‘You wouldn’t wear just any pair of glasses – your prescription is tailored to your vision’. This statement alludes to and embraces the importance of an individual’s unique characteristics: genetics, health history, lifestyle, diet, or geographic location. Just as you would expect your doctor to match a blood transfusion to a blood type, wouldn’t you want your health care tailored uniquely to you in other ways if that were possible? The answer is likely YES. This is the foundation of precision medicine, a customized treatment plan based on an individual’s unique characteristics and developed using advanced technology.

How Does Precision Medicine Use Advanced Technology to Match a Cancer Treatment to a Patient?

While all humans are alike, variations in DNA blueprints are what differentiate one from another, and in certain individuals those variations may be the root cause of some illnesses, including cancer. Modern computational technology has made it possible for scientists to analyze the gigantic sets of codes in our DNA that affect human health and to identify tiny variations in that code. This is Precision Medicine.

How Does Targeted Therapy Rely on Precision Medicine?

Because cancer may be considered a disease of genomics, or one’s DNA, we now have the technology and knowledge to pinpoint where the change in genomics occurred and caused certain cancers. This helps us to design cancer treatments specifically targeting those abnormalities in cancer cells without harming adjacent normal cells. This is Targeted Therapy.

As an example, scientists have learned the genomic alteration related to lung cancer patients and are exploring how using targeted therapy shapes the way we treat lung cancer. One of the genes that is abnormal and might cause cancer is MET (c-MET; MET-EXON 14).

What Is MET and How is it Related to Cancer?

c-MET is a protein (MET gene) we all have in our body that plays a role in normal cell growth. Sometimes, for an unknown reason, MET gets altered and can contribute to cancer. Recent research suggests that these alterations in the MET gene (e.g., Exon 14 skipping, amplification or fusion) are often found in patients with lung cancer and other types of solid tumour cancers. Therefore, inhibiting abnormal MET pathways is considered an important focus area for developing new targeted therapies.

A Clinical Trial Targeting MET

The SPARTA Clinical Trial is exploring an investigational drug (APL-101) that targets tumour cells expressing one or more MET genetic abnormalities in hopes to cause tumour cell death and shrink or halt cancer cell growth in various advanced cancer types. APL-101 has been studied in participants with advanced solid tumours (including glioblastoma; gastrointestinal cancers; lung cancer) in a Phase 1/2 global clinical trial enrolling in 14 countries around the world.

To be eligible for the SPARTA Study, patients must qualify for the prerequisite criteria including a diagnosis with advanced tumours and have one (or more) of the following alterations in their MET gene: MET Exon 14 skipping mutation, MET Amplification, MET-gene Fusions.

To learn more about investigational options for patients with MET aberrated cancers, visit:

You should consult your doctor to discuss the possible benefits and ways for you to get the MET genetic alteration test and participate in the SPARTA Clinical Trial.

1. Precision Medicine Initiative letters to President Obama [2015;] 2. Tyrosine Kinase Inhibitors for solid tumors in the past 20 years. Huang L et al., 2020


Thank you to Apollomics for this guest piece. Visit their website here.

Need more information or support?

Learn more about the work brainstrust does in the clinical research landscape here.

If you want to receive all the latest research news in a jargon-free accessible weekly newsletter, sign up to our ‘weekly brew’. Head to the contact us page, and make sure to opt-in to research.


The Brain Tumour Data Dashboard lets you explore up -to-date, population level data about the brain tumours diagnosed in England between 2013 and 2015. Using the drop down menus on the left you can select different groups of patients to view in the charts below. In these charts the number of patients for every 100 diagnoses is displayed as images of people. Patients have been grouped by date of diagnosis, type of tumour, age, gender, and region in England.

For each group of patients you can explore the different routes to diagnosis, the proportion of those who received chemotherapy or radiotherapy, as well as the survival of the patients within each group. For more information about what these metrics mean please see the glossary.

How to use

  1. Select the year of diagnosis using the drop down menu.
  2. Select your patient group of interest from the four drop down menus in the following order:
    1. Tumour group
    2. Age at diagnosis
    3. Region of England
    4. Gender of patient
  3. To view a second chart to compare different groups of patients, click the ‘compare’ button.The second chart will appear below the first chart.

*Note that the tool is best used on a laptop or tablet rather than a mobile phone*

Unavailable data

Some of the data in these charts is not available.There are two main reasons for this:

  1. How the data has been grouped

If you cannot select a patient group from the drop down menus, the data is unavailable because of how the data has been organised.

Public Health England has grouped the data like a branching tree. The bottom of the tree contains all the patients with brain tumours, and then each branch divides the data by a certain characteristics, like age, or location of tumour. But the data is divided in an order, starting with location of the tumour (endocrine or brain), then by age, region, and gender. Age is at the start because it makes a bigger difference to survival rates and treatment rates than gender or region. Sometimes, after the data has been split by type of tumour and age, there is not enough data to be split again. This is because to protect patient confidentiality groups cannot contain less than 100 patients. Because some groups cannot be split further, you cannot create ‘totals’ for everyone by region or gender. For example, you cannot see results for all ages by region, or all brain tumours by gender. If these totals were calculated and released, it might be possible to identify patients, which is why Public Health England cannot release this data.

  1. Statistical reasons and data availability

If you can select a patient group from the chart menus, but the chart does not display, the data is unavailable for one of several reasons:

  1. Data is not yet available for the selected year from Public Health England.
  2. Data is not available because the data quality is too poor to release this statistic.
  3. Data is not available as the statistic is not appropriate for this group.
  4. Data is not available because the standard error of the estimate was greater than 20% and so the estimate has been supressed.

Up to date brain tumour data

Brain tumour data may influence the decisions you make about your care. Data also helps you understand the bigger picture, or landscape, in which you find yourself.

Brain tumour data and statistics influence the focus, and work of organisations like brainstrust. The information helps us to understand the scale and impact of the problems we are setting out to solve.

This tool helps you understand the landscape in which you find yourself having been diagnosed with a brain tumour. This landscape can be particularly tricky to navigate as there are many different types of brain tumour, all of which have a different impact.

The information you see represents the most up-to-date, official, population level brain tumour data available for England. Over time we will be adding to the brain tumour data available and publishing reports, with recommendations, as a result of what we learn from this data.

The data behind this content has come from Public Health England’s National Cancer Registration and Analysis Service (NCRAS) and is a direct result of the ‘Get Data Out’ project.

This project provides anonymised population level brain tumour data for public use in the form of standard output tables, accessible here:


The number or rate (per head of population) of new cases of a disease diagnosed in a given population during a specified time period (usually a calendar year). The crude rate is the total number of cases divided by the mid-year population, usually expressed per 100,000 population.


Malignant tumours which grow by invasion into surrounding tissues and have the ability to metastasise to distant sites


The number or rate (per head of population) of deaths in a given population during a specified time period (usually a calendar year). The crude rate is the total number of deaths divided by the mid-year population, usually expressed per 100,000 population.


Not cancerousNon-malignant tumours may grow larger but do not spread to other parts of the body.


The length of time from the date of diagnosis for a disease, such as cancer, that patients diagnosed with the disease are still alive. In a clinical trial, measuring the survival is one way to see how well a new treatment works. Also called ‘overall survival’ or ‘OS’.

Routes to Diagnosis

Under the ‘Routes to Diagnosis’ tab in the Brain Tumour Data Dashboard, you can explore the ways patients have been diagnosed with brain tumours. There are many ways, or routes, for cancers to be diagnosed in the NHS. A ‘route to diagnosis’ is the series of events between a patient and the healthcare system that leads to a diagnosis of cancer. The routes include:

  1. Two Week Wait

Patients are urgently referred by their GP for suspected cancer via the Two Week Wait system and are seen by a specialist within 2 weeks where they are diagnosed.

  1. GP referral

Diagnosis via a GP referral includes routine and urgent referrals where the patient was not referred under the Two Week Wait system.

  1. Emergency Presentation

Cancers can be diagnosed via emergency situations such as via A&E, emergency GP referral, emergency transfer or emergency admission.

  1. Outpatient

Outpatient cancer diagnoses include diagnoses via an elective route which started with an outpatient appointment that is either a self-referral or consultant to consultant referral. (It does not include those under the Two Week Wait referral system).

  1. Inpatient elective

Diagnosis via an inpatient elective route is where diagnosis occurs after the patient has been admitted into secondary care from a waiting list, or where the admission is booked or planned.

  1. Death Certificate Only

Diagnoses made by Death Certificate Only are made where there is no more information about the cancer diagnosis other than the cancer related death notifications. The date of diagnosis is the same as that of the date of death.

  1. Unknown

For some patients with a cancer diagnosis, there is no relevant data available to understand the route to diagnosis.


More information

If any of the statistical terms in this section of the brainstrust website are hard to understand, we recommend looking them up here:

Cancer Research UK’s Cancer Statistics Explained

If you are looking for help understanding terms relating specifically to brain tumours, and treatment, then the brainstrust glossary is available here: